Potencia Electrica Central SA de CV
potenciaelectrica.com.mx ... desde 1988

Calculo de cortocircuito

29 May 2014

La corriente de cortocircuito es debida a una falla de aislacion que ocurre en un momento cualquiera y en un punto generico de la red, también puede deberse a una maniobra equivocada (que anula una aisalcion necesaria) o a otras causas.

Consideremos un circuito cualquiera formado por fuente E, resistencia R, inductancia L, y en el cual en un instante dado t0 se establece corriente (1).

Se puede suponer que la fuente genera una tensión nula hasta el instante t0, y luego la tensión asume cierto valor, también puede suponerse que en el instante t0 una llave se cierra y conecta la fuente aplicando asi cierta tensión al circuito.

Para este sencillo pero completo circuito puede escribirse la ecuación diferencial que se observa en la figura 1a, y la solución de esta ecuación diferencial nos describe el valor de la corriente en el tiempo.

Recordemos que la solución de una ecuación diferencial es suma de dos términos, uno que representa el régimen permanente y otro el régimen transitorio.

1.1 – Cortocircuito en corriente continua

Si la tensión es constante (corriente continua), y se aplica en un instante cualquiera (t = 0), el problema es muy simple de resolver, como se ve en las figuras 2, 3 y 4, se deben conocer además las condiciones iniciales, por ejemplo antes de la aplicación de la tensión la corriente era nula (i = 0).

La expresión muestra la corriente en función del tiempo y se pueden observar sus componentes permanente y transitoria.

La corriente permanente figura 2 es la que se presenta cuando se ha alcanzado la condición de regimen, la transitoria en cambio acompaña la transición del valor antes de la aplicación de la tensión al valor permanente después de la aplicación figura 3.

Acabamos de estudiar el cortocircuito en corriente continua para el caso en que la tensión no se modifique a consecuencia de la corriente de cortocircuito (la tensión se mantiene constante) figura 4.

La corriente crece hasta alcanzar el valor E/R, en un tiempo L/R la corriente transitoria se reduce de 1 a 0.367 = 1/e (recordemos e = 2.71828182846…).

El circuito estudiado es muy simple, por complejo que sea el problema es siempre posible llevarlo a ese grado de simplicidad aplicando el teorema de Thevenin.

Se mide la tensión entre los bornes que se van a cortocircuitar y esta es la fuerza electromotriz del circuito equivalente, luego se mide la impedancia entre los puntos a cortocircuitar, habiendo pasivado (cortocircuitado) todas las fuentes de la red, y esta es la impedancia serie del circuito equivalente.

Conceptualmente esto es muy simple, en rigor encontrar los valores de R y L equivalentes quizás requiera un poco mas de estudio.

1.2 – Cortocircuito en corriente alterna

Tratemos de analizar un cortocircuito en una red de corriente alterna aplicando el teorema de Thevenin.

Podemos llegar al mismo circuito analizado para continua, que es general y nos representa cualquier caso figura 5, siempre que la circulación de la corriente no sea causa de modificaciones en la tensión de la fuente (como ocurre con un generador proximo).

Supongamos que la tensión del generador de Thevenin es sinusoidal, y su amplitud se mantiene en el tiempo.

Recordemos que la solución de la ecuación diferencial lineal de primer orden se obtiene como suma de la solución de la ecuación homogénea (igualada a cero) y una integral particular (de la completa, igualada a la función de excitación e y que sera similar a esta), otra forma de resolver las ecuaciones diferenciales es mediante la transformada de Laplace (o con el método operacional de Heaviside) veanse las formulas de la figura 5a.

El procedimiento parece complejo, y quizás esto sea cierto para un problema tan simple, pero el método permite ser sistemático y entonces es fácilmente aplicable a problemas difíciles.

Observando la solución obtenida se logran distinguir la corriente permanente y transitoria como ya se ha visto antes.

La corriente permanente puede calcularse conociendo los parametros del circuito, la transitoria en cambio depende del instante de inicio de la corriente, y del estado previo.

2 – EL CORTOCIRCUITO EN SISTEMAS DE CORRIENTE ALTERNA

Si en un punto de una red monofasica de corriente alterna hacemos un cortocircuito figura 5, la forma de la corriente es típica según hemos visto en el punto anterior figura 8.

Trazando las envolventes que pasan por los picos superiores e inferiores, y trazando luego la curva que pasa por el medio de las envolventes obtenemos la corriente que habíamos llamado transitoria figura 7.

Para evitar confusiones, de aquí en mas a esta componente la llamaremos continua o componente unidireccional y consideraremos que la corriente de cortocircuito es suma de una componente unidireccional y una componente alterna figura 6.

El valor máximo de la componente alterna se obtiene midiendo la distancia (en un instante t) entre las dos envolventes (amplitud), utilizando la escala correspondiente figura 9..

La componente continua se da con su valor instantáneo, mientras que la componente alterna se da en valor eficaz, que siendo sinusoidal se obtiene dividiendo la amplitud pico pico por 2.83 = 2 * raiz(2) = 2 * 1.41421356237….

La componente alterna puede variar de amplitud en el tiempo, pero por ahora la consideraremos amplitud constante, como la que se presenta en el circuito equivalente que hemos construido para estudiar el cortocircuito.

Nos interesa encontrar valores característicos de la corriente de cortocircuito.

El valor eficaz de la componente alterna de amplitud constante, se determina en base a la impedancia del equivalente de Thevenin de la red que se estudia.

Si el circuito es complicado se puede reducir la red haciendo operaciones serie, paralelo, conversiones estrella triángulo y viceversa, llegándose finalmente a una sola impedancia equivalente.

El valor instantáneo de la componente alterna no es en general de particular interés, de todos modos se sabe que es variable con ley sinusoidal y a la frecuencia de la red.

La componente continua inicia con cierto valor que puede variar desde cero hasta el máximo de la componente alterna según el valor de psi (ángulo de inserción, o de cierre) y por otra parte se debe tener en cuenta el eventual valor inicial i(0-).

La ley de decremento de la componente continua es una función exponencial, y los parametros que definen Z, fi y Tau son R y L, lo que implica una interdependencia.

Observemos la relación entre el ángulo fi, la constante de tiempo de la componente continua Tau y la impedancia Z.

En la medida que el ángulo fi es menor, el circuito es mas resistivo, hay menor diferencia de fase entre corriente y tensión (5.1), la constante de tiempo es menor y la duración del transitorio es menor.

Analicemos el caso con constante de tiempo muy grande, situación que se presenta en un circuito prácticamente sin resistencia, es decir prácticamente solo reactivo (como ocurre en sistemas de gran potencia), el pico máximo de la corriente de cortocircuito se produce con un retardo respecto del instante de inicio del cortocircuito que depende de la relación entre el cero de tensión, y el inicio del cortocircuito.

El pico máximo se presentara próximo al primer cero de tensión después del inicio.

Es de interés identificar el instante en que se produce el pico máximo en una condición generica cualquiera, y en particular en que condición se produce el máximo absoluto.

Si escribimos la corriente en forma simplificada, y además suponemos que i(0-), la corriente previa al momento de la falla, es despreciable en las condiciones que estudiamos y si buscamos los máximos de icc cuando t varía para lo cual debemos hacer la derivada parcial de icc respecto de t, igualarla a cero, obtenemos el maximo.

Se ha obtenido una ecuación trascendente que permite determinar los valores de t que dan los extremos (máximos y mínimos) de la icc.

Si la corriente se establece de manera que psi = fi, no existe componente continua solo habrá componente alterna, y todos los picos seran del mismo valor; en cambio para distintos valores de psi se obtienen distintos picos máximos.

Si se deriva respecto de psi, se iguala a cero, y se combina esta ecuación con la anterior se determinan los máximos absolutos (pico maximo).

Esta ecuación combinada con la anterior muestra que el maximo se obtiene con psi = 0, es decir si la corriente se establece en el instante en el cual la tensión pasa por cero se presentara el maximo de los máximos, independientemente de los valores de R y L.

Para determinar el instante en que se produce el maximo se debe resolver una ecuación trascendente para encontrar el instante, y luego es inmediato encontrar el valor del pico maximo, reemplazando este valor en la función que da icc.

Es útil disponer de un gráfico que para cada valor de R/X muestre el pico maximo que puede esperarse y como información complementaria el instante t, o el ángulo omega*t en que se produce (11).

En general un cortocircuito ocurre en forma casual, y por lo tanto no siempre se presenta el pico maximo, siendo el azar el que regula su presencia efectiva.

A los fines de un dimensionamiento realizado para soportar el maximo cortocircuito, es necesario determinar el pico maximo.

Cuando se profundiza en el estudio, es útil un diagrama que muestre la probabilidad de ocurrencia de cada valor entre el pico maximo y el valor que se presenta.

Resumiendo hemos observado una corriente con componente continua y componente alterna, la componente alterna es de amplitud constante, la componente continua confiere a la corriente total forma asimétrica, cuando no existe componente continua, la corriente total es simétrica.

Si la corriente se establece cumpliendo la condición psi=fi no habrá componente continua.

La inductancia del circuito en estudio se ha supuesto constante, la amplitud de la fuerza electromotriz y su frecuencia también.

3 – CORTOCIRCUITO EN SISTEMAS TRIFASICOS

Una enorme cantidad de instalaciones eléctricas, por no decir casi todas las de importancia, son trifasicas, y deben sera estudiadas teniendo en cuenta esa condición.

Lo tratado hasta aquí es plenamente valido para el caso de fallas trifasicas.

Los generadores en rigor son trifasicos simétricos, constituyen un sistema generador que llamaremos de secuencia directa.

En funcionamiento normal la red es equilibrada de manera que se presentan en todas las fases las mismas corrientes desfasadas 120 grados eléctricos.

Desde nuestro punto de vista podemos suponer el circuito equivalente como tres generadores monofasicos vinculados, desfasados entre si 120 grados eléctricos alimentan la red trifasica (12 y 13).

Debe observarse que al producirse una falla trifasica la tensión de las distintas fases tiene distinto ángulo respecto del cero de referencia.

Cuando en un sistema trifasico se presenta una falla trifasica, el sistema no pierde la simetría, por esto la falla trifasica se llama también simétrica (14).

Por otra parte se pueden producir fallas bifásicas, o monofasicas, que se dicen asimétricas por la particular situación que presentan.

Se supone que la falla trifasica es con cierre simultaneo de los tres polos, pero en realidad cuando esto se hace con un interruptor real puede haber algún defasaje entre los polos, hasta de 1/4 de ciclo, y entonces se establecera una falla monofasica que evolucionara a trifasica; aún asi generalmente se acepta la hipótesis de simultaneidad.

La falla trifasica simétrica se trata con un circuito equivalente monofasico que representa una sola fase del sistema, con este equivalente se puede determinar la corriente alterna fácilmente.

Las tres componentes alternas de fase en la falla trifasica estan desfasadas entre si 120 grados, por lo que sus tres valores iniciales, suman algebraicamente cero, pero al menos dos son distintos de cero y siempre hay componente continua al menos en dos fases (14).

Los valores iniciales de la componente continua se obtienen haciendo t = 0.

Se puede observar que si psi=0, como ya visto se presentara el pico maximo para la fase R, las otras fases tendrán valores de pico menores.

Si en cambio psi=fi entonces la fase R tendrá solo componente alterna, y las otras fases componentes continuas iguales (y opuestas).

Para determinar la corriente de falla trifasica es necesario construir el circuito equivalente de una fase, determinar la tensión y la impedancia de Thevenin (15).

Supongamos que la red solo esta alimentada por un generador, y esta formada por transformadores y cables que deben sera reducidos a una impedancia equivalente.

Si la red esta en vacío la determinación de la tensión de Thevenin se hace a partir de la tensión del generador, variándola en base a la relación de transformación de los distintos transformadores que se encuentran entre el generador y el punto de cortocircuito.

La impedancia de Thevenin se obtiene cortocircuitando la fuente interna del generador, dejando solo su impedancia funcional (la que se ve cuando se produce el cortocircuito) y reduciendo toda la red a una sola impedancia teniendo en cuenta también la variación debida a los transformadores (17).

Recordemos que si la relación del transformador es k, la tensión del lado carga se tendrá dividiendo por k la tensión del lado fuente, y la impedancia del lado fuente deberá dividirse por k^2 para sera considerada del lado carga.

La impedancia de líneas y cables es la que se encuentra si se los alimenta en circuito trifasico con secuencia directa y esta dada por su valor medido en ohm, a veces se conoce su valor específico, por unidad de longitud, y su longitud.

La impedancia de los transformadores en cambio se da en valor relativo, referida a la potencia nominal del transformador, que se obtiene del ensayo del transformador alimentándolo desde un arrollamiento con tensión reducida estando el otro arrollamiento cortocircuitado.

Con este valor se reconstruye fácilmente la impedancia en ohm del transformador vista desde cualquiera de los arrollamientos (primario, o secundario).

Para separar la resistencia y reactancia se debe conocer el cosfi de cortocircuito del transformador, o bien conocer sus perdidas en cortocircuito que en valor relativo coinciden con la resistencia.

Las líneas y cables tienen admitancia que representa la capacitancia entre fases y hacia tierra.

Los transformadores también tienen admitancia que representa la rama de excitación por donde circula la corriente de vacío.

En los cálculos de cortocircuito estos valores normalmente se desprecian, lo que se justifica controlando su efectiva influencia

Si la red en estudio se representa con las capacitancias se observa que estas tienen cierta influencia, en particular los bancos de capacitores importantes complican la fácil resolución del circuito.

4 – CALCULO DE LA CORRIENTE DE FALLA

El valor que interesa de la corriente de falla es su amplitud, que puede determinarse conociendo el valor eficaz de la tensión de la fuente, y el valor de la impedancia del circuito.

Recordemos que para determinar el valor de la corriente en un sistema trifasico es suficiente analizar una sola fase.

En una red de distribución de energía se produce una falla trifasica, es intuitivo pensar que la red de alta tensión que a través de transformadores, líneas y cables alimenta el punto de falla, no es influenciada por la falla (15).

Suponemos que la red de alimentación tiene un equivalente Thevenin que puede sera determinado y tiene inductancia constante y amplitud de la tensión constante.

La red queda formada por el generador de Thevenin e impedancias que representan líneas, cables y transformadores, y que unen los distintos puntos de la red con la fuente.

Es conveniente pensar en dos sistemas, la red real y un modelo que construiremos adecuado para calcular.

En el modelo debemos definir las escalas que lo relacionan con la red real, establecemos una potencia de referencia (potencia base, Pbase), según el sistema de que se trate establecemos una tensión de referencia (tensión base, Ubase), y es conveniente seleccionar como tal la tensión que va surgiendo de las relaciones de transformación de los transformadores.

Para cada sistema quedan entonces identificadas la corriente base, y la impedancia base.

Al haber adoptado las tensiones base como arriba se indicó los transformadores quedan representados con solo su impedancia, no es necesario un transformador de adaptación de la relación de transformación.

La construcción del modelo que parece trabajosa y no justificada para un calculo resulta conveniente cuando los cálculos deben repetirse en distintas condiciones de red.

El trabajo de construcción del modelo es ampliamente compensado por la economía de cálculos subsiguientes, un buen modelo muestra muchas veces la inutilidad de calcular valores en ciertos puntos, ya que los valores relativos de las impedancias ponen en evidencia que la magnitud a calcular es despreciable.

Este modo de calcular se denomina metodo de los valores relativos, o por unidad.

4.1 – Metodo de las potencias

Conviene introducir un concepto que si bien no resiste el análisis físico resulta muy útil a los fines del calculo, se llama potencia de cortocircuito el producto de la corriente de cortocircuito por la tensión nominal, en rigor en el punto de cortocircuito la tensión es nula por lo que físicamente tiene sentido solo la corriente.

Con la red reducida a una sola impedancia equivalente se determina la corriente de cortocircuito en base al valor de impedancia, y la potencia de cortocircuito correspondiente, que es la potencia entregada a la red por el generador ideal (34).

Esta potencia resulta sera una característica propia de la impedancia a la que hemos reducido la red, esta potencia de cortocircuito es inversamente proporcional a la impedancia, y entonces proporcional a la admitancia.

Tomando un elemento cualquiera de la red, alimentándolo con un generador ideal, podemos determinar su potencia de cortocircuito, para un transformador sera su potencia nominal dividida por su impedancia (en valor relativo) Sn / z, para un cable sera la potencia en juego cuando lo alimentamos a tensión nominal, con el otro extremo en cortocircuito, U^2 / Z (36).

Con un esfuerzo equivalente al hecho para el modelo de impedancias de la red, podemos determinar para cada componente de la red su potencia de cortocircuito propia (38).

Siendo las potencias de cortocircuito análogas a las admitancias de los componentes, simplemente se trata de resolver el circuito para cada punto de falla pensando que manejamos admitancias, y obtendremos como resultado la potencia de cortocircuito en cada punto(40).

La potencia de cortocircuito que resulta de elementos en paralelo es la suma de las potencias de cada elemento (la admitancia es suma de las admitancias), en cambio cuando los elementos se encuentran en serie se debe hacer la inversa de la suma de las inversas (siendo dos, producto dividido suma, la impedancia es suma de las impedancias, y se conocen las admitancias).

Este metodo es practico especialmente cuando rápidamente se desean fijar ordenes de magnitud. Ver figura 42 y figura 43 que incluyen el ejemplo n 1.

Aplicando este metodo es inmediato observar que cuando en un nodo convergen distintas ramas y se conoce el aporte de cada una (calculado independientemente) la potencia de cortocircuito total se obtiene por suma de los aportes figura 44 el ejemplo n 2.

5 – FALLAS NO TRIFASICAS

El titulo de este punto puede parecer capcioso, no quisimos que decir fallas asimétricas confundiera al lector con la asimetría de la corriente, de todos modos quede en claro que las fallas:

monofasicas (a tierra o al neutro)

bifásicas (aisladas)

bifásicas a tierra (o al neutro)

son fallas asimétricas (18, 19 y 20) desde el punto de vista del circuito.

También se pueden presentar dobles fallas a tierra, como dos fallas monofasicas a tierra en puntos distintos de la red, y otras fallas mas complejas con interrupciones de una o mas fases.

Para su calculo es habitual auxiliarse del metodo de las componentes simétricas, se representa la red eléctrica con tres modelos de secuencia directa, inversa y homopolar (positiva, negativa y cero), que se conectan adecuadamente.

Se determinan las corrientes y tensiones de secuencia y se pueden reconstruir las corrientes y tensiones de fase en distintos puntos que en definitiva son los valores que interesan (21).

Las corrientes de fase pueden ser consideradas suma de las tres corrientes de secuencia. Los cálculos son relativamente complejos para hacerlos a mano, salvo en casos donde valen simplificaciones muy drásticas.

El modelo de red de secuencia directa es el que se ha utilizado para el calculo de cortocircuito trifasico (17).

El modelo de red de secuencia inversa, puede sera el mismo de secuencia directa teniendo en cuenta que los generadores de secuencia inversa tienen tensión nula, precisamente se hace mucho esfuerzo de diseño para lograr esto en los componentes de la red.

Las impedancias de secuencia inversa de los transformadores y cables son iguales a las directas, solo se presentan diferencias en los generadores y motores, de todos modos en los resultados de cálculos prácticamente no se producen diferencias al suponerlas iguales.

Se debe recordar que los transformadores que presentan defasajes entre sus tensiones primarias y secundarias (Dy ,Zy y otros) deben sera tenidos en cuenta en el modelo cuando interesan las corrientes en las ramas que los conforman.

El modelo difícil de construir es el de secuencia cero, líneas y cables tienen parametros de secuencia cero que son muy distintos (de determinar) a los de secuencia directa, en ellos influyen los retornos, pantallas, armaduras, canalizaciones metálicas, cables de guardia si se trata de líneas aereas, el suelo según sean las conexiones a tierra (24).

El esquema equivalente de los transformadores para la secuencia cero desacopla los sistemas en algunos casos (Dy) mientras que en otros los mantiene acoplados (Yy), también debe considerarse la influencia de las conexiones a tierra de los neutros.

A su vez en muchos casos los neutros se encuentran conectados a tierra a través de una impedancia, que debe tenerse en cuenta en el modelo, y aparece multiplicada por tres para tener en cuenta que es atravesada por tres veces la corriente homopolar (las tres fases).

Según sea la conexión a tierra del sistema (aislado o con bobina de alta impedancia) puede sera importante representar las impedancias derivación de la red, concretamente las capacitancias (de secuencia cero) de los cables o las líneas aereas.

5.1 – Determinación de la corriente

Los modelos se conectan en modo oportuno para representar cada tipo de falla.

Para el cortocircuito trifasico solo se utiliza el circuito de secuencia directa, la corriente de secuencia directa coincide con la de falla (26).

Para determinar el cortocircuito bifásico (aislado de tierra) se conectan en serie los circuitos de secuencia directa e inversa, y se obtienen las corrientes de secuencia directa e inversa, y de ellas la corriente de falla (28).

El cortocircuito bifásico a tierra se representa con el paralelo de los circuitos de secuencia inversa y homopolar que se conectan en serie al de secuencia directa, las corrientes de falla de las fases involucradas son distintas por la presencia de corriente de tierra (30).

La falla asimétrica mas importante de determinar es generalmente la falla monofasica a tierra, las tres redes de secuencia se conectan entre si en serie en los puntos donde se produce la falla (32), y de las tres corrientes de secuencia se obtiene la corriente de la fase fallada (22).

6 – EL CORTOCIRCUITO PROXIMO A UN GENERADOR

Para lograr separar los distintos fenómenos que se presentan es conveniente observar una corriente de cortocircuito simétrica (sin componente continua), además debe asegurarse que los dispositivos de regulación de tensión asociados a los generadores no intervengan.

La amplitud de la corriente de cortocircuito varía, esto puede sera explicado suponiendo que varía la fuerza electromotriz interna del generador, o varía la inductancia, reactancia (46).

La teoría de las maquinas eléctricas ayuda a aclarar este tema, pero en forma muy simplificada se observa que la amplitud de la corriente total simétrica de cortocircuito puede suponerse suma de tres componentes.

Corriente de cortocircuito permanente, cuya amplitud es constante, y que se observa después de un largo tiempo de iniciado el cortocircuito.

Un incremento que decrece exponencialmente con una constante de tiempo del orden de segundos, y que se identifica con el nombre de transitoria, y que se origina en la interacción con el circuito de excitación.

Otro incremento que decrece exponencialmente con una constante de tiempo del orden de los ciclos, llamada subtransitoria, originada en la interacción con los circuitos superficiales del rotor (jaulas amortiguadoras).

La corriente total (simétrica) es asi suma de tres componentes, permanente, incremento transitorio, e incremento subtransitorio.

Se identifican tres valores de corriente de cortocircuito que se llaman subtransitorio, transitorio, permanente.

Se pueden entonces identificar tres valores de reactancia de cortocircuito subtransitoria, transitoria, y permanente correspondiente a cada valor de corriente.

Un generador esta caracterizado por estos valores de reactancia que son objeto de medición durante los ensayos.

Además deben sera definidos los valores de la constante de tiempo transitoria, y subtransitoria.

Por como se conocen los valores esta amplitud esta fijada en valor eficaz, por otra parte en nuestro razonamiento hemos despreciado la resistencia de los circuitos, lo cual se justifica fácilmente en los problemas reales no modificándose prácticamente la amplitud por este motivo.

Si observamos una fase en la cual la corriente no es simétrica detectamos una componente continua cuyo valor inicial es fijado como antes vimos por el valor de la componente alterna en el instante inicial (48).

En la constante de tiempo de la componente continua tiene importancia la resistencia de nuestra maquina, que despreciamos para determinar la amplitud de la corriente.

Hemos hecho hasta aquí varias simplificaciones que se adoptan generalmente como hipótesis de calculo cuando se determinan los valores de las corrientes de cortocircuito.

Frecuentemente es de interés conocer cuanto influyen los generadores en la corriente de cortocircuito, según resulte se dice que el cortocircuito es cercano o lejano al generador (50).

En la amplitud de la corriente, el generador pesa con su reactancia, que se suma a la de la red hasta el punto de cortocircuito, a medida que es mayor la impedancia de la red la diferencia relativa entre las corrientes subtransitoria, transitoria y permanente se reduce, y con ello la importancia de considerar la reactancia correcta para el generador.

Otra forma de considerar la importancia del generador es comparando la corriente de cortocircuito por el aportada, con su corriente nominal, en general se considera que el cortocircuito es lejano cuando el aporte no supera dos veces la corriente nominal, y se observa que en este caso la amplitud de la corriente de cortocircuito es constante, los fenómenos subtransitorios y transitorios son despreciables.

7 – APORTE DE MOTORES A LA CORRIENTE DE CORTOCIRCUITO

También en este caso es conveniente observar una corriente de cortocircuito simétrica, además debe asegurarse que eventuales dispositivos de regulación de tensión asociados a los motores sincrónicos no intervengan.

La corriente de cortocircuito aportada por un motor sincrónico es totalmente análoga a la que antes estudiamos para el generador.

Si en cambio observamos un motor asincrónico veremos solo fenómenos parecidos a los subtransitorios o transitorios, según como sean los bobinados del rotor del motor (52).

La teoría de las maquinas eléctricas ayuda a aclarar este tema, la corriente de cortocircuito permanente al no estar sostenida por una fuerza electromotriz interna del motor que se ha extinguido con su flujo desaparece en pocos ciclos.

El aporte del motor asincrónico decrece exponencialmente con una constante de tiempo del orden de ciclos.

Si observamos una fase en la cual la corriente no es simétrica detectamos una componente continua, que decrece exponencialmente con adecuada constante de tiempo.

El circuito equivalente de aporte al cortocircuito de un motor tiene cierta analogía con el que el motor presenta al momento del arranque.

Efectivamente, cuando el motor arranca su fuerza electromotriz interna es nula, su impedancia se encuentra alimentada por la tensión de la red, cuando se presenta el cortocircuito la tensión de la red se anula, la fuerza electromotriz interna del motor queda sola, y la impedancia es la que limita la corriente de cortocircuito en el primer instante.

Por este motivo la primera aproximación que frecuentemente se justifica es suponer que la corriente de aporte al cortocircuito es igual a la corriente de arranque.

8 – EFECTOS DE LA CORRIENTE DE CORTOCIRCUITO

El dimensionamiento de las instalaciones y de sus componentes no se hace para soportar el estado de cortocircuito permanente, en rigor estas condiciones pueden sera soportadas por tiempos relativamente modestos, y con frecuencia también modesta.

Los efectos que se presentan cuando se produce un cortocircuito en la instalación deben sera conocidos y controlados.

8.1 – Efectos térmicos

La circulación de corriente en un conductor cualquiera produce calor por efecto Joule.

Si se desea conocer los efectos de este fenómeno se debe realizar la integral que permite evaluarlo, por el tiempo que interesa.

Es útil para cuantificar la cantidad de calor definir una corriente de valor constante equivalente que produce el mismo efecto térmico; para el caso que no hubiera componente continua, y para periodos enteros se tiene, el valor por la definición misma de valor eficaz.

Cuando hay componente continua, y el tiempo de estudio del fenómeno es breve, es indispensable resolver la integral.

A medida que la duración es mayor se pueden aceptar algunas simplificaciones, que pueden justificarse fácilmente.

Se define la corriente asimétrica y se puede determinar para distintos instantes el valor asimétrico de la corriente como raíz cuadrada de la suma del valor eficaz simétrico al cuadrado, mas el cuadrado de la componente continua.

La componente continua se determina para distintos instantes, y para cada uno se obtiene la corriente asimétrica.

La cantidad de calor se puede determinar haciendo la integral de la corriente asimétrica en forma numérica.

Con esta simplificación se logra un resultado comparable a la integral cuando los tiempos son superiores a algún ciclo.

Los estudios de prearco de fusibles con corrientes elevadas y con tiempos menores de un ciclo obligan a resolver la integral para evaluar correctamente la cantidad de calor.

8.2 Efectos dinamicos

Los esfuerzos de cortocircuito que se presentan entre dos conductores dependen del cuadrado de la corriente que por ellos circula, en rigor dependen del producto de las corrientes, pero si la corriente es la misma en ambos conductores la primera afirmación es correcta.

El cuadrado de la corriente instantánea que varía es una función de frecuencia doble, si la corriente es con componente continua se observar un valor medio de la corriente, una componente fundamental que desaparece a medida que desaparece la componente continua y que depende de ella, y una segunda armónica que depende de la componente alterna fundamental de la corriente.

Resumiendo hemos identificado el valor de pico de la corriente de cortocircuito, el valor eficaz de la componente alterna, el valor de la componente continua, el valor asimétrico y el valor equivalente de la solicitación térmica.

9 – FACTOR DE FALLA A TIERRA

En los distintos sistemas de la red eléctrica el neutro puede encontrarse conectado a tierra directamente o a través de una impedancia, aun cuando el sistema esta aislado de tierra en rigor se encuentra conectado a tierra a través de la capacitancia de secuencia cero del sistema (a veces de las cargas).

Cuando el sistema se encuentra conectado a tierra directamente en rigor se tiene una impedancia de pequeño valor, a medida que esta aumenta se dice que no esta mas conectado efectivamente a tierra.

El valor de esta impedancia esta ligado al valor de la corriente de cortocircuito monofasica.

Para definir cuan efectivamente esta puesta a tierra una red en un punto determinado se utiliza el factor de puesta a tierra.

El factor de puesta a tierra, para una configuración dada de la red, y para un punto determinado es la relación entre la tensión eficaz mas elevada entre la fase sana y la tierra, mientras persiste la falla a tierra, y la tensión eficaz entre fases cuando no se tiene falla.

Si pensamos en un sistema idealmente aislado, este factor sera 1 ya que la tensión de la fase sana será igual a la tensión compuesta cuando este una fase a tierra.

Si en cambio pensamos en un sistema idealmente a tierra este factor será 0.57 = 1/1.73 ya que la tensión respecto de tierra de las fases sanas no variara cuando se produzca la falla.

Este factor se puede determinar en cada punto de la red en función de las impedancias de secuencia directa inversa y homopolar vistas en ese punto, cuando se hacen estos cálculos los generadores se representan con sus impedancias subtransitorias.

Se considera que un sistema esta efectivamente a tierra mientras su factor de puesta a tierra este comprendido en 0.8, por arriba se lo considera aislado.

Esta condición se cumple cuando para todas las configuraciones de la red se tiene que:

R0 / X1 < 1; X0 / X1 < 3

Siendo X0 reactancia de secuencia homopolar, R0 resistencia, X1 reactancia de secuencia directa.

Las figuras siguientes muestran la tension maxima entre linea y tierra que se obtiene en caso de falla fase tierra para R1 = R2 = 0, o para R1 = R2 = 0.1 * X1, para R1 = R2 = 0.2 * X1, a partir de las relaciones R0 / X1 y X0 / X1, y conocida la relacion R1 / X1 de obtiene en el grafico correspondiente el valor de U.

Otro factor que se define es el factor de falla a tierra, denominado k a los fines de coordinación de la aislación, se define como relación de la tensión eficaz de las fases sanas durante una falla a tierra (monofasica o bifásica) respecto del valor eficaz de la tensión de fase en ausencia de falla.

En un sistema idealmente aislado este factor es 1.73, mientras que en un sistema idealmente a tierra es 1, se considera que el sistema es aislado cuando este factor supera 1.4.

Obsérvese que la relación entre el factor de falla a tierra y el factor de puesta a tierra es 1.73.